Reversible Protein Phosphorylation
Protein phosphorylation catalyzed by protein kinases plays a critical role in cellular signaling. Here we review several chemical approaches to understanding protein kinases and the consequences of protein phosphorylation. We discuss the design of bisubstrate analogue inhibitors based on a dissociative transition state, the development of reagents for cross-linking protein kinases with their substrates, the chemical rescue of mutant protein tyrosine kinases, and the application of expressed protein ligation to understanding protein phosphorylation. For discovery concerning reversible protein phosphorylation as a biological regulatory mechanism were  in year 1992 awarded by Nobel Prize for Physiology and Medicine Edmond H. Fischer and Edwin G. Krebs
During protein phosphorylation, phosphate moieties are transferred to the serine, threonine or tyrosine residues of proteins from adenosine triphosphate molecules by protein kinases, and are hydrolysed by protein phosphatases
Plants responses to mechanical injury are complex and include the induced expression of defence-related genes. The phytohormone JA has been reported to mediate some of these responses. To elucidate further the signal transduction processes involved, the action of specific agonists and antagonists of known signalling effectors on the response of Arabidopsis thaliana plantlets to JA and wounding was investigated. The identification and characterization of a reversible protein phosphorylation step in a transduction pathway leading to JA-induced gene transcription is reported. This phosphorylation event involved the opposing activities of a staurosporine-sensitive protein kinase, negatively regulating the pathway, and a protein phosphatase, most probably of type 2 A, which activated JA-responsive gene expression. JA activation via this pathway was blocked in the A. thaliana JA-insensitive mutants jin1, jin4 and coi1, and by exogenous application of cycloheximide or auxins. Wound-induced activation of JA-responsive genes was also regulated by this protein phosphorylation step. An alternative wound signalling pathway, independent of JA, was also identified, leading to the transcriptional activation of a different set of genes. This JA-independent pathway was also regulated by a protein phosphorylation switch, in which the protein kinase positively regulated the pathway while the protein phosphatase negatively regulated it. Moreover, a labile protein apparently repressed the expression of these genes. One of the genes analysed, JR3, had a complex pattern of expression, possibly because it was regulated via both of the wound signalling pathways identified. According to the function of an homologous gene, JR3 may be involved in feedback inhibition of the JA response.
Several members of the okadaic acid class of inhibitors are shown below including calyculin A and the tumour promoter okadaic acid.
 

 

 

 

 

 

For discovery concerning reversible protein phosphorylation as a biological regulatory mechanism were Edmond H. Fischer and Edwin G. Krebs in year 1992 awarded by Nobel Prize for Physiology and Medicine